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Abstract-A straight foreward relation for mu~t~~omponent gaseous diffusion coeficients is derived by 
application of theelementary mean free path theory. The relevant parameters in this relation-are obtained by 
comparison with equations resulting from the kinetic theory of monatomic gases. As a result of this 
procedure the multicomponent diffusion coefficients are represented explicitly as a function of the binary and 
self-diffusion coefficients. The accuracy of the new equation is very satisfidctory. This is demonstrated by a 

number of examples. 

hCiME\CL.ATURE 

multicomponent diffusion coefficient 
(kinetic theory); 
self-diffusion coefficient ; 
binary diffusion coefficient ; 
multi~omponent diffusion coefficient 
(mean free path theory); 
diffusional mass flux vector ; 
Boltzmann-constant; 
mean free path for number density 
transfer of component 7”; 
molecular weight of component “i”; 

molecular weight of gas mixture; 
mass of a molecule of component “i”; 
number of components; 
mean thermal speed of molecules of 
component “i” ; 
mean total veiocity of molecuies of 
component “i”; 
mass average velocity; 
moie fraction of component ‘7”; 
partial density of component “i”; 
total density. 

I. INlXODUC’l’lON 

mass fluxes is the application of the so called mean free 
path theory, e.g. [6-81. The mean free path theory, on 
the other hand, has certain decisive disadvantages. 
Depending on the relation adopted for calculating the 
mean free paths the equations are either simple and 
extremely inaccurate or nearly as compticat~ as those 
derived from the exact kinetic theory [6-83. 

For this reason the mean free path theory was never 
seriously adopted for practical problems involving 
transport coefficients. The present investigation re- 
veals, that by comparison of relations following from 
the mean free path theory with those of the “exact” 
kinetic theory, relatively simple and very accurate 
approximation equations may be derived for the 
multicomponent coefticients. 

2. BASIC EQUAl‘lOPiS 

Neglecting pressure and thermal diffusion, the fol- 
lowing equations for the diffusion~lt mass fluxes j, of 
components “i” result from the kinetic theory of 
monatomic gases in the 1. Chapman-Enskop approxi- 
mation [ 11. 

N M.Mk 
ji = p c *D”gradx, (2.1) 

k=I 
kfi 

Nf . . 

-&yradx, = c - 
r 

X$--X&~ 
t;; ‘/ik k I 1 

(2.2 1 

CONCENTRATION diffusion plays an important role in 
many technicat problems. Typical examples are ab- 
lation cooling or combustion processes. 

The mutticomp~~nent gaseous diffusion coefficients 
are usual ty calculated by equations derived from the K 

kinetic theory of mon~;tomic gases El]. Especially for ,g,ji =O. (2.3 1 

mixtures with many components the numerical eva- 
luation of these equations is extremely tedious and The diffusional mass flux ji of component “i” in 

often not feasible for practical problems. For this equations (2.1)-(2.3) is defined by 

reason various authors have derived approximations ji = pi(ui - 6) (2.4) 
based on the equations of the kinetic theory [2-51. 
These investigations, except those by Schaber et trl. [4], with 

did not lead to explicit relations for multicomponent 
1 N 

a=- c piui (2.5) 
diffusion coefficients. Another means of obtaining Pi=1 

expressions for the diffusion coefficients or diffusional vi is the mean total velo&ty of component i and d the 
1301 
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mass average velocity. In equations (2.1 t(2.5) Mi is 
the molecular weight, xi the mole fraction and pi the 
partial density of component “i”. M is the mean 
molecular weight and p the bulk density of the mixture. 

Equation (2.1), which represents the diffusional 
mass fluxj, explicitly as a function of the concentration 
gradients grad xi, contains the multicomponent dif- 
fusion coefficients Di,. 

These are complex functions of temperature and 
concentrations. In the first Chapman-Enskog appro- 
ximation the concentration dependence disappears 
only for 2-component mixtures. 

Equations (2.2), however, usually called 
Stefan-Maxwell equations, yield the gradients grad xi 
explicitly as function of the implicitly occurring dif- 
fusional mass fluxes ji. The advantage of equations 
(2.2) is, that only the binary diffusion coefficients I/, 
are needed. These may easily be calculated by the well 
known equations of the kinetic theory [l]. 

From the elementary mean free path theory [8] one 
obtains the following relation for the difference of the 
mean total velocities of the components i and k: 

ui-uk = -f[uiligrad(Inxi)-u,I,grad(Inx,)] 

k = 1,2 ,... N. (2.6) 

In equations (2.6) ui is the mean thermal speed and li 
the mean free path for number density transfer of the 
molecules of component “i”. 

Multiplication of equation (2.6) with the partial 
density plr and a summation over all indices k yields, if 
one takes account of equation (2.5) 

p(t+--6) = -fpu,ligrad(Inxi) 
N 

+$ c pru,/,grad(Inx,). (2.7) 
k=l 

By introducing the relations pk/xk = pMJA? and 
xi grad xi = 0 the following equation is obtained: 

k#i 

grad xk. (2.8) 

By comparison of the two equations (2.8) and (2.1) the 
following multicomponent diffusion coefficient BP 
based on mean free path theory may be defined : 

~iFP=f XiUk/k +~(A-MiXi)Uili 1 . (2.9 1 
k 

The form of equation (2.9) is extremely simple; on the 
other hand it contains the unknown parameters ui and 
Ii. If one calculates u, and li simply by the mean free 
path theory, the results obtained are extremely un- 
satisfactory. Even for binary diffusion coelllcients 
equation (2.9) predicts a completely wrong de- 
pendence of Dik on concentration, e.g. [8]. 

3. DERIVATION OF THE APPROXIMATION EQUATIONS 

The unknown values uili in equations (2.8) and (2.9 I 
can be eliminated by comparison of these equations 
with the relations following from the kinetic theory. 

From equation (2.2) one obtains 

Mi P limji = -~- 
N x M,gradxi 

x,-O 
T’ 

(3.1) 

with 

kk:; 9ik 

M’= lim R. 
x,-O 

(3.2) 

By considering the relation xi grad xi = 0 a com- 
parison of equations (2. I ) and (3.1) yields 

(3.3 1 

j*i 

On the other hand it follows from equation (2.9) that 

1 A’ 
lim 06 = -- lim u./. 

3M ‘I’ x,-o k X,-O 

(3.4) 

We now postulate, that the coefhcients D, and OF are 
identical. A comparison of equations (3.3) and (3.4) 
then yields 

lim u,/, = _3. (3.5) 
x,-o K-2 

je, Yij 
j+i 

For the limiting case xi + 0 the term uili in equation 
(3.5) is expressed by relations of the kinetic theory, i.e. 
by the binary diffusion coefficients. No further infor- 
mation may be gained by calculating the other limiting 
case lim,, . , u,/, from kinetic theory. 

On the other hand, the mean free path theory yields 
a relation between u,/, and the self-diffusion coefficient 
c/$ 

lim uili = 3Y,,. (3.6) 
X,-I 

In accordance with equations (3.5) and (3.6) the 
following empirical equation for uili is proposed: 

3 
Uili = 

$J+ ,!,$ 

(3.7) 

II 1, j#i 

The occurrence of the self-diffusion coefficient gii in 
equation (3.7) is justified by the mean free path theory 
but is contradictory to the equations of the exact 
kinetic theory. 

For this reason the factor 1; in equation (3.7) was 
introduced in order to allow an adaption to the 
relations of the kinetic theory. 

Equation (3.7) satisfies the limiting case of xi -+ 0 in 
equation (3.5) and of xi -+ 1 in equation (3.6). By 
introducing equation (3.7) into equation (2.9) one 
obtains 

Dip = 
Xi 

$h + j;kz 
kk 

;(&f-Mixi) 

+ k . (3.8) 
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The factorsi must now be determined. One obtains for mixtures, since the terms fi and fk are not solely 

a binary mixture: dependent of the properties of components i and k. 

Drp = .I 
Xi 

+ 
Xk 

(3.9) 
For this reason h and jk were approximated by 

empirical relations. Numerical investigations of mix- 
tures with 5-17 components showed, that the best 
results were obtained with 

As is well known, the binary diffusion coefficient of the 
first Chapman-Enskog approximation is independent 
of concentration. If one postulates, that Dip = Dik, 
then equation (3.9) at once results in the condition: 

(3.10) 

For a binary mixture, therefore, the factors J and _& 
have to satisfy the condition (3.10) in order to gain 
independence of concentration for the binary diffusion 
coefficient. 

For a mixture of three components i, k, I it follows 
from equation (3.7) that 

t (R- MiXi) 

+ k 
$A+$+$. 

II rk 11 

(3.11) 

The equation for the same 3-component mixture, if 
derived by the kinetic theory, has the same structure as 
equation (3.11). By transformation of the equations 
presented by Hirschfelder et cl/. [I] the following 
relation is obtained : 

D, = xi 

&Ff-Mix,’ 
+ k . (3.12) 

The similarity in structure of equations (3.11) and 
(3.12) is quite surprising. The two equations are 
identical, if the following conditions are fulfilled: 

gkkgli 
A=-----. 

saik gk, 
(3.13) 

From equations (3.13) one again obtains the condition 
(3.10). Equation (3.10) is therefore a necessary con- 
dition for the diffusion coefficients Dip of binary and 
ternary mixtures to be identical with the coefficients 
D, defined by the kinetic theory. 

Equation (3.10) is now assumed to be generally valid 
for a definition of the factors j; and&, although this 
cannot be rigidly contirmed for mixtures with more 
than three components. 

On the other hand such relations as equations (3.13) 
cannot be generalised for arbitrary multicomponent 

(3.14) 

Equation (3.10) is satisfied by equation (3.14). Sub- 
stitution of equation (3.14) in equation (3.8) yields the 
final approximation formula for the multicomponent 
gaseous diffusion coefhcients: 

xi 

+ 
@I - Mixi)/Mk 

(3.15) 

Equation (3.15) satisfies the following conditions: 
(i) The limiting values of Dip for xi -+ 0 and xi + 1 

are identical with the corresponding values D, derived 
by the kinetic theory. From equations (3.3 ) and (3.15 ) 
follows: 

lim Drp = lim D. tk rk . (3.16) 
x,-O xi-o 

Furthermore equation (3.15) yields 

lim DFP = 2. 
If tk . (3.17) 

xi-1 

It can be shown, that this is also in accordance with the 
kinetic theory. 

(ii) The equation is exact for a binary mixture. 
(iii) The equation is exact for a ternary mixture, if 

the conditions 

y,i = (giip,,)‘/2 gr, = (9kk9,,) ‘I2 (3.18) 

are fulfilled, i.e. the binary diffusion coefficients must be 
equal to the geometric mean of the corresponding self- 
diffusion coefficients. 

This also makes it understandable physically, why 
the self-diffusion coefficients appear in equation (3.15). 
The ratios of the self-diffusion coefficients in equation 
(3.15) may be regarded as approximations for the 
ratios of binary diffusion coefficients. 

In the following chapter the general applicability 
and accuracy of equation (3.15) for multicomponent 
mixtures is demonstrated by some specific examples. 

4. EXAMPLES 

To test the validity ofequation (3.15) the multicom- 
ponent diffusion coefficients were calculated for va- 
rious gas mixtures. The diffusion coefficients obtained 
by equation (3.15) were compared with the results 
computed by the “exact” kinetic theory. The binary- 
and self-diffusion coefficients were calculated by the 
well known relations of the kinetic theory [l]. For the 
mixture of dissociated air the potential parameters for 
a Lennard-Jones 6-12 potential by Schaber et al. [4] 
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were adopted. For the other mixtures these values were 
taken from Svehla [9]. 

To begin with, let us examine the results for 
dissociated air with the five components N,, O,, NO, 
N and 0. Figure 1 shows multicomponent diffusion 
coefficients, which were calculated as a function of 
temperature, once again with equation (3.15) and once 
by the exact kinetic theory. The corresponding con- 
centrations are the equilibrium values at a pressure of 
p = 1 bar. In Fig. 1 only those six diffusion coefficients 
out of twenty are presented, for which the largest 
differences between approximate and exact theory 
occur. 

I 
0, 
cm! 

T 

FIG. 1. DitTusion coefficients in the mixture ofdissociated air. 

The dashed curves show the results of equation 
(3.15) and the solid curves represent “exact” values. As 
can be seen from Fig. 1 the agreement between the 
approximate and exact theory is very good. For the 
other fourteen values of diffusion coefficients no signi- 
ficant differences occur. The mean relative error for 
this mixture is less than 3%. Here one has to bear in the 
mind, that the potential parameters, which are em- 
ployed in both theories to calculate the binary dif- 
fusion coefticients, are certainly less accurate, es- 
pecially at high temperatures [4]. 

As a further example a mixture of hydrogen and 
oxygen with the six components l-1, H,, 0, OH, H,O 
;md 0, was investigated. This mixture may be re- 
garded as representing the oxygen,-hydrogen com- 
bustion. This mixture is particul~~rly suited to test the 
utility of equation (3.151, since the components have 
extremely different molecular weights. This implies, 
that also the diffusion coefficients differ largely. 

Figure 2 shows those multicomponent diffusion 
coeflicients of this mixture as a function of the 
hydrogen concentration for which the largest differ- 
ences occur. The temperature is T = 15OOK and the 
pressure p = 1 bar. In order to demonstrate the con- 
centration dependence of the diffusion coefficients the 
concentration of hydrogen was varied between 0 -C .Y 
< I whereas the concentrations of the other com- 

H-O2 
__-_ __--- 

10 
--7------r 

T=1500K 
- Km. rheory 

24 

FIG. 2. Diffusion coefficients in a mixture of hydrogen and 
oxygen. 

ponents were taken to be equal, i.e. .xk = (1 - ?c,,)/S. As 
may be seen in Fig. 2, equation (3.15) permits the 
calculation of multicomponent diffusion coefficients 
with excellent accuracy even for mixtures with com- 
ponents of very different molecular weights. 

Figure 3 shows a number of diffusion coefficients for 
the same mixture: in this case, however, the con- 
centration of oxygen, the component with the largest 
molecular weight, was varied between 0 < ~0~ < I. 

I / 
5 ..- --___ _02 _ o _~~ 

)_~ 

-___+ 

o-o* ---I 

40-02 / 
ml *or 

0 a2 0.4 Q6 0.8 ~,a 
x02 ) 

Frc;. 3. Diffusion coefficients in ;I mixture of hydrogen and 
oxygen. 
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In addition to the above twoexamplesvarious other 
mixtures were investigated. These mixtures and the 
observed mean relative deviations of the coefficients 
L)ip from those of the kinetic theory are listed in Table 
1. The temperatures were varied between 1000 < T 
< 7000 K. The concentrations of the components with 
the smallest and largest molecular weight were sys- 
tematically varied as described above for the H-O 
mixture. 

Table 1 

Mixture 

N,, 0,. NO, N, 0 

H, Hz, 0, OH, H,O, 0, 

C, N, 0, CN, CO, C,, 
N,, 0,. CO, 

H, Hz, CH,, CH,, 0 
OH, H,O, CO, N,, NO, 
0,. H,O,, N,O, CO, 

H, H,. C, N, 0, OH. 
H,O, CH,, Nzr O,, CN, 
CO, NO. C,. C,H,, 
HCN, CO, 

Mean 
Number relative 

Of error 
components (%) 

5 <3 

6 <3 

9 <3 

I4 t1.5 

17 <1 

As one can see in Table 1, the approxi~tion 
equation (3.15) yields excellent results. Only in excep- 
tional cases greater differences between D$’ and Di, 
can occur. These are for a mixture of two excess- and 
some trace components, if the diffusion coefficient of an 
excess-component with extremely large molecular 
weight into a trace-component with extremely small 
molecular weight is computed. The reason is, that the 
numerator of the right hand side of equation (3.15) 
contains the ratio of themolecular weights ofthe heavy 
and the light component and therefore a small error in 
the denomin~~tor on the right hand side may be 
increased strongly by this ratio. 

This deviation, however, has no effect on the result- 
ing diffusional mass fluxji of component i since for its 

calculation Dik is multiplied by the extremely small 
concentration gradient grad .xk of the trace component 
k and therefore becomes negligible in comparison with 
the other terms. 

5. SUMMARY 

The approximation equation (3.15) permits ;I simple 
and accurate calculation of multicomponent gaseous 
diffusion coefficients. The dominant advantages are 
the simple and explicit representation its compared 
with thec~)rnput~~ti~~n~~l complexity of theexact theory. 

The greatest accuracy is achieved if either the 
molecular weights of the compcments do not differ 
strongly or if the number of components is huge. 
However, the accuracy is very satisfactory for mixtures 
with components of extremely different molecular 
weights. This was demonstr~~ted for various mixtures 
with up to 17 components. 
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UNE FORMULE SIMPLE, DERIVEE DE LA THEORIE DU LKBRE 
PARCOURS MOYEN, POUR LES COEFFICIENTS DE DIFFUSION DANS 

LES GAS A PLUSIEURS COMPOSANTS 

Resume-Par application de la theorie tltmentaire du libre parcours moyen, on derive une relation directe 
pour les coefficients de diffusion dans les gaz a plusieurs composants. 

Les paramttres intervenant dans cette relation sont obtenus par comparaisoa avec des equations qui 
risultent de la theorie des gaz monoatomiques. I1 resulte de cette procedure que les coefficients de 
diffusion sont represent&s explicitement comme fonctions des coefficients binaires et d’autodiffusion. La 
precision de la nouvelle formule est t&s satisfaisante. Ceci est demontre par de nombreux exemples. 

BEZIEHUNG ZUR BERECHNUNG DER POLYNAREN GASDIFFUSIONSKOEFFIZIENT~N 

Zusammenfaasung-Aus der elementaren Wegllngentheorie wird eine einfach strukturierte Beziehung zur 
Berechnung der polynaren Gasdiffusionskoeflizienten hergleitet. Die in dieser Gleichung auftretenden 
unbekannten Parameter werden durch einen Vergleich mit den aus der kinetischen Theorie einatomiger 
Case folgenden Beziehungen bestimmt. Auf diese Weise konnen die polyniiren Diffusionskoeffizienten 
explizit als Funktion der bin&en Diffusionskoeflizienten und der Selbstdiffusionskoeflizienten dargestellt 

werden. Die Gennuigkeit dieser Beziehung ist sehr gut. Dies wird anhand einiger Beispiele demonstriert. 

HMT Vol. 20, No. 12-C 
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IIPOCI-W QOPMYJIA AIW KO~~~4~EHTOB MHOrOKOM~OHEHTHO~ 
~~~~Y3~ I-A3A, ~O~Y~H~ C POMONA TEOPMH CPE&HEfi 

&J’IMHbI CBOEOAHOrO nP0ljEI.A 

.?immmm- BbmAeno npocToecooTHo~eHHe AJIX Ko3@@iUHeHTo~ A,@$#~~HH MHoroKotmoHeHT- 
Ho~cMecK ra30Bc nobiouwo 3AeMeHrapHoBTeopmcpeAHeft A.mmbx c~o60A~oro npo6era. Ilapa- 
MeTpbl B 3TOM CoOTHOUWUiU nOAy'IeHb1 lIOC~ACTBOM C~BHeHIiR C ypaBHWHBMH KHHeTHYeCKOt 
TeopHH AJIR OAHOaTOMHbIX 3[;2308. K03#&WHeHTbI AH##lyJHH MHOrOKOMIlOHeHTHOii CMeCH IIpeA- 
CTaBJleHbI B 5lBHOft @OpMe KBK ~yHKUHI 6HHapHbIX KO3&$HUSieHTOB A,H@4y3HH H KO3+$HlWeHTOB 
CaMOAH#l@y3HH. TowocTb HOBoI. ypaBHeHHI BeCbMa yAOBAeTBOpHTeJlbHtl, ‘IT0 llO~TBep?lCA%TC5i 

UWlblM PXAOM COlIOCTaBJleHH8. 


